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Particle Physics(L6,L7)





Characteristics of Fundamental Interactions:

Fundamental Interactions are classified into four types, namely 

1. Strong Interaction

2. Weak Interaction

3. EM Interaction

4. Gravitational Interaction

• Exchange Particle

• Range

• Strength

• Time scale

Strong Interaction Weak Interaction EM Interaction Gravitational Interaction

Exchange Particle Gluons (𝑔) 𝑊±, 𝑍 Photon (𝛾) Graviton (𝐺)

Mass 0 81 GeV, 91 GeV 0 0

Spin 1 1 1 2



Range of a Fundamental Interaction:

Interactions occur via exchange particles known as Mediating particle.

The de’Broglie’s wavelength of the corresponding mediating particle determines the range of the particular 
type of interaction.

Assuming the mediating particle to be moving with velocity of light in the ultrarelativistic limit we obtain the 
following expression:

𝜆 =
ħ

𝑝
≈

ħ

𝑚𝑐
=

ħ𝑐

𝑚𝑐2

For the sake of simplicity assume ħ𝑐 = 200 𝑀𝑒𝑉 − 𝑓𝑚 instead of 197 𝑀𝑒𝑉 − 𝑓𝑚, one can estimate the 
range of an interaction from the above expression.  

Range of any interaction is found to be inversely proportional to mass of the exchange particle.



Range of Strong Interaction:

Assuming pion to be the exchange particle, the range can be estimated as follows 

𝜆𝑆𝐼 =
ħ𝑐

𝑚𝜋𝑐
2
=
200𝑀𝑒𝑉 − 𝑓𝑚

140 𝑀𝑒𝑉
≈ 1.4 × 10−15𝑚

This is the typical size of the diameter of a nucleus.

Range of Weak Interaction:

Mediators : 𝑊±, 𝑍

Masses : 𝑀𝑊 = 80 𝐺𝑒𝑉 ; 𝑀𝑍 = 91 𝐺𝑒𝑉

𝜆𝑊𝐼 =
ħ𝑐

𝑚𝑊𝑐
2
=
200𝑀𝑒𝑉 − 𝑓𝑚

80 𝐺𝑒𝑉
≈ 2.5 × 10−18𝑚



Range of EM Interaction:

Mediator : Photon

Mass: 𝑚𝛾 = 0 (Rest mass)

𝜆𝐸𝑀𝐼 =
ħ𝑐

𝑚𝛾𝑐
2
= ∞

Consistent with our daily observations.

Range of Gravitational Interaction:

Mediator : Graviton

Mass: 𝑚𝐺 = 0

𝜆𝐺𝐼 =
ħ𝑐

𝑚𝐺𝑐
2
= ∞

Conclusions:

• SI and WI are forces of short range.

• EMI and GI are forces of infinite range



Strength of Fundamental Interactions:

The interaction can be classified according to the value of a characteristic dimensionless constant related
through a coupling constant to the interaction cross section and interaction time. The stronger the interaction,
the larger is the interaction cross section and shorter is the interaction time.

If the potential is defined as 𝑉 𝑟 =
𝑔

𝑟
𝑒−

𝑟

𝑅 where, 𝑔 is the coupling constant, 𝑅 is the range of the

corresponding potential. Notice that this type of potentials are of finite range.

The dimensionless constant is
𝑔2

ħ𝑐
estimates the strength of the corresponding interaction.

Strong Interaction:

𝑉𝑠 𝑟 =
𝑔𝑠
𝑟
𝑒−

𝑟
𝑅

𝑔𝑠: Strong coupling constant

𝑅: Range of the SI (10−15𝑚)

dimensionless constant,
𝑔𝑠
2

ħ𝑐
≈ 1 − 10



Weak Interaction:

𝑉𝑤 𝑟 =
𝑔𝑤
𝑟
𝑒−

𝑟
𝑅

𝑔𝑤: Strong coupling constant

𝑅: Range of the WI (10−18𝑚)

It is a short-range interaction, its strength is determined by the Fermi coupling constant for 𝛽 −decay.

𝐺𝐹 = 1.4 × 10−49𝑒𝑟𝑔 − 𝑐𝑚3

dimensionless constant,
𝑔𝑤
2

ħ𝑐
=

𝐺𝐹𝑚𝑝
2𝑐

ħ3
≈ 10−5

EM Interaction:

𝑉𝐸𝑀 𝑟 =
𝑒

𝑟
e: Electronic charge

𝑅: Range of the EMI (∞)

dimensionless constant,   
𝑒2

ħ𝑐
≈

1

137
≈ 10−2 => Fine structure constant, 𝛼



Gravitational Interaction:

𝑉𝐺𝐼 𝑟 =
𝐺𝑚𝑝

𝑟

𝐺𝑚𝑝: Gravitational Strength parameter (assuming proton-proton interaction)

𝑅: Range of the EMI (∞)

dimensionless constant,   
𝐺𝑚𝑝

2

ħ𝑐
≈ 6 × 10−39

Conclusions:

• GI is the weakest interaction among the four fundamental interactions, hence it can be neglected in all 
particle interactions although its range is infinite.

• SI is the strongest among the four.

• Comparing the EMI with GI we see that 
𝐺𝑚𝑝

2

𝑒2
≈ 10−36 assuming protons to be the interaction particles.



Characteristic features of Four Fundamental Interactions

Interaction Characteristic 
constant

Strength Range of 
Interaction

Typical Cross-
section

Typical 
lifetime

Strong 𝑔𝑠
2

ħ𝑐

1 − 10 10−15𝑚 10−26𝑐𝑚2 10−23 𝑠

Electromagnetic 𝑒2

ħ𝑐

10−2 ∞ 10−29𝑐𝑚2 10−16 𝑠

Weak 𝑔𝑤
2

ħ𝑐
=
𝐺𝐹𝑚𝑝

2𝑐

ħ3
10−5 10−18𝑚 10−38𝑐𝑚2 10−6 − 10−10 𝑠

Gravitational 𝐺𝑚𝑝
2

ħ𝑐

10−39 ∞



Conservation Laws in Particle Physics:

E: Energy                                                I  : Isospin

P: Momentum                                         𝐼3: 3rd Component of isospin

J: Angular momentum                            Π : Parity

Q: Charge

L: Lepton no (more precisely, 𝐿𝑒, 𝐿𝜇 , 𝐿𝜏)

B: Baryon no

S Strangeness 

Interaction E P J Q B L 
(𝒆, 𝝁, 𝝉 )

S I 𝑰𝟑 𝚷

Strong Y Y Y Y Y Y Y Y Y Y

Weak Y Y Y Y Y Y N N N N

EM Y Y Y Y Y Y Y N Y Y



Relevant things to remember:

Gell-Mann-Nishijima Formula:

𝑄 = 𝐼3 +
𝐵 + 𝑆

2

𝑌 = 𝐵 + 𝑆 => Hypercharge, 

Heperons: The particles having non-zero hypercharge quantum numbers are called Heperons. 

e.g., Σ±,0, Ω etc.

• Multiplicity of states (particles) determines the value of 𝐼

• Octet & Decuplet give the information about 𝑄, 𝐵, 𝑆 and quark content of particles.

• In determining whether a particular reaction is allowed or forbidden and also to determine the nature of a 
particular interaction, relevant quantum numbers are to be remembered with typical  characteristics of the 
fundamental interactions.  

• In order to check whether  a particular reaction is allowed or not, Check with 
𝐸, 𝑃, 𝐽, 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑄, 𝐵, 𝐿

• In order to determine the nature of particular type of interaction, 𝑆, 𝐼, 𝐼3 are to be checked in addition to the 
other quantum numbers mentioned  above.



Eightfold Way



Determination of 𝐼3 for 𝑝, 𝑛, Σ±,0, Λ0, 𝜋±,0, Ω−

𝐼3 = 𝑄 −
𝐵+𝑆

2

For 𝑝

𝐼3 = +1 −
1+0

2
= +

1

2

For 𝑛

𝐼3 = 0 −
1+0

2
= −

1

2

For Λ0

𝐼3 = 0
For Ω−

𝐼3 = 0

For Σ±,0

𝐼3 = +1 −
1−1

2
= +1

𝐼3 = −1 −
1−1

2
= −1

𝐼3 = 0 −
1−1

2
=0

For 𝜋±,0

𝐼3 = +1
𝐼3 = −1
𝐼3 = 0

For 𝑢

𝐼3 = +
2

3
−

1

3
+0

2
= +

1

2

For 𝑑

𝐼3 = −
1

3
−

1
3 + 0

2
= −

1

2



𝜋− + 𝑝 → 𝐾+ + Σ−

Allowed or Forbidden 
Δ𝑄 = 𝑄𝑓 − 𝑄𝑖 = +1 − 1 − −1 + 1 = 0
Δ𝐵 = 𝐵𝑓 − 𝐵𝑖 = 0 + 1 − 0 + 1 = 0

• Conservation of lepton number need not be checked as there is no lepton in this reaction.

• The reaction is possible

• If it is asked to find which law forbids this reaction then, conservation of 𝑆, 𝐼3, Π etc. are to checked. 

Type of the Interaction: (Gell-Mann-Nishijima Formula needs to be used)

Δ𝐼 = 𝐼𝑓 − 𝐼𝑖 =
1

2
+ 1 − 1 +

1

2
= 0

Δ𝐼3 = 𝐼3𝑓 − 𝐼3𝑖 = +
1

2
− 1 − −1 +

1

2
= 0

Δ𝑆 = 𝑆𝑓 − 𝑆𝑖 = +1 − 1 − 0 + 0 = 0

It is a Strong Interaction. (Check from the Table in slide 11)



𝜇− → 𝑒− +𝜈𝜇 + 𝜈𝑒

Allowed or Forbidden 
Δ𝑄 = 𝑄𝑓 − 𝑄𝑖 = −1 + 0 + 0 − −1 = 0

Δ𝐿𝜇 = 𝐿𝜇𝑓 − 𝐿𝜇𝑖 = +1 − +1 = 0
Δ𝐿𝑒 = 𝐿𝑒𝑓 − 𝐿𝑒𝑖 = −1 + 1 − 0 = 0

• Conservation of baryon number need not be checked as there is no baryon in this reaction.

• The reaction is possible
𝑝 + 𝑛 → Λ0 + Σ+

Allowed or Forbidden 
Δ𝑄 = 𝑄𝑓 − 𝑄𝑖 = 0 + 1 − 1 + 0 = 0

Δ𝐵 = 𝐵𝑓 − 𝐵𝑖 = +1 + 1 − +1 + 1 = 0

• The reaction is possible

𝑛 → 𝑝 + 𝑒− is forbidden due to violation of angular momentum & Lepton no

𝑛 → 𝑝 + 𝜋− is forbidden due to violation of energy conservation

𝜋0 → 𝛾 + 𝛾 It is an em interaction

Why 𝑝 → 𝑒+ + 𝜋0 decay is forbidden? Which conservation law forbids this decay?

Σ+ → 𝑝 + 𝜋0

Here, Δ𝑆 = +1 , it is a Weak decay. Note that the particle that is decaying is strange one.



Particle Physics(L8)





Isospin:

In 1932 Heisenberg introduced the concept of isospin.

Masses of neutron and proton being nearly degenerate, Heisenberg proposed that neutrons and protons are the 
two states of a single particle called nucleon

𝑚𝑝 = 938.3 𝑀𝑒𝑉 & 𝑚𝑛 = 939.6 𝑀𝑒𝑉

The small mass difference in mass might be due to electrostatic energy stored in proton as it is charged 
whereeas neutrons are neutral particles.

Isospin symmetry is like spin in ordinary space. Isospin symmetry is defined in internal space spanned by 
three axes represented by Pauli’s matrices 𝜎𝑥, 𝜎𝑦, 𝜎𝑧. It will follow the same algebra as spin does.

Rotational invariance in isospin space leads to conservation of Isospin.

Suppose we define a rotation in isospin space about axis-y by an amount 𝜃, the transformation is given by 

𝑈 𝜃 = 𝑒𝑖𝜎2𝜃

Define nucleon in two-component form : 𝑁 =
𝛼
𝛽 with  p =

1
0

and n =
0
1

Isospin is denoted by  𝐼 which is a vector in an abstract isospin space having 3 components 𝐼1, 𝐼2, 𝐼3



Like spin 3rd component of isospin (𝐼3) has values from −𝐼 to +𝐼 in steps of unity. (Multiplicity =2𝐼 + 1)

The states of nucleon are :

𝑝 = |  
1

2

1

2
n = |  

1

2
−

1

2

The proton is “isospin up” and the neutron is “isospin down” just a convention.

Strong interaction is invariant under rotations in isospin space  just like electrical forces are invariant under 
rotation in ordinary configuration spaces. 

It is an “internal” symmetry as it has nothing to do with space-time but rather with the relations between 
different particles.

Example: A rotation  through 180°about axis-1 in isospin space converts protons into neutrons, and vice versa.

According to Noether’s theorem, isospin is conserved in all strong interactions.

It is not an exact symmetry as there is small difference in masses of neutrons and protons.  

Isospin is not conserved in electromagnetic interactions. Therefore, em interactions can differentiate neutrons 
and protons as the lattar are charged.   



In the language of group theory, Heisenberg asserted that the strong interactions are invariant under an internal 
symmetry group 𝑆𝑈(2) and the nucleons belong to the two-dimensional representation (isospin ½ ).

This is called nucleon isospin doublet.

Particles placed in a particular horizontal line in Eightfold Way diagrams belong to same multiplet with fixed 
isospin quantum number. Each member of the corresponding multiplet has different 𝐼3 values.

For 𝜋′𝑠: 𝐼 = 1 (Triplet state, 2𝐼 + 1 = 3)

𝜋+ = |  1 1 𝜋0 = |  1 0 𝜋− = |  1 − 1

For Λ, 𝐼 = 0(Singlet)

Λ = |  0 0

For Δ′𝑠 , 𝐼 =
3

2
(Quartet) 

Δ++ = |  
3

2

3

2
Δ+ = |  

3

2

1

2
Δ0 = |  

3

2
−

1

2
Δ− = |  

3

2
−

3

2

Quark isospin doublet

𝑢 = |  
1

2

1

2
d = |  

1

2
−

1

2



Nucleon-Nucleon scattering (Isopin is conserved)

(a) 𝑝 + 𝑝 → 𝑑 + 𝜋+

(b) 𝑝 + 𝑛 → 𝑑 + 𝜋0

(c) 𝑛 + 𝑛 → 𝑑 + 𝜋−

Isospin of 𝑑 is 0 (Singlet) 

Initial States :                                                              Final States:        

(a)  𝑝 + 𝑝 ∶  
1

2

1

2
 

1

2

1

2
= |  11 d + 𝜋+ ∶:  00  11 = |  11

(b)  𝑝 + 𝑛 ∶  
1

2

1

2
 

1

2
−

1

2
=

1

2
|  10 +

1

2
|  00 d + 𝜋0 ∶:  00  10 = |  10

(c)  𝑛 + 𝑛 ∶  
1

2
−

1

2
 

1

2
−

1

2
= |  1 − 1 d + 𝜋− ∶: |  00 |  1 − 1 = |  1 − 1

Matrix element of process (a) : 𝑑𝜋+  𝐻𝑆𝐼 𝑝𝑝 = 11  𝐻𝑆𝐼 11 = 1  𝐻𝑆𝐼 1 = 𝑀1

Matrix element of process (b) : 𝑑𝜋0  𝐻𝑆𝐼 𝑝𝑛 =
1

2
10  𝐻𝑆𝐼 10 +

1

2
10  𝐻𝑆𝐼 00 =

1

2
1  𝐻𝑆𝐼 1 =

𝑀1

√2

Matrix element of process (c) : 𝑑𝜋−  𝐻𝑆𝐼 𝑛𝑛 = 1 − 1  𝐻𝑆𝐼 1 − 1 = 1  𝐻𝑆𝐼 1 = 𝑀1

𝜎𝑎: 𝜎𝑏: 𝜎𝑐 = 𝑀1
2:

1

2
𝑀1

2: 𝑀1
2 = 2: 1: 2



Pion-Nucleon scattering:

(a) 𝜋+ + 𝑝 → 𝜋+ + 𝑝

(b) 𝜋− + 𝑝 → 𝜋− + 𝑝

(c) 𝜋− + 𝑝 → 𝜋0 + 𝑛

Initial/Final States :

𝜋+ + 𝑝 ∶  |1 1 |  
1

2

1

2
= |  

3

2

3

2

𝜋− + 𝑝:  1 − 1  
1

2

1

2
=

1

3
|  
3

2
−

1

2
−

2

3
|  
1

2
−

1

2

𝜋0 + 𝑛 ∶  1 0  
1

2
−

1

2
=

2

3
|  
3

2
−

1

2
+

1

√3
|  
1

2
−

1

2

Matrix element of process (a) : 𝜋+𝑝  𝐻𝑆𝐼 𝜋
+𝑝 =

3

2

3

2
 𝐻𝑆𝐼

3

2

3

2
=

3

2
 𝐻𝑆𝐼

3

2
= 𝑀3

Matrix element of process (b) : 𝜋−𝑝  𝐻𝑆𝐼 𝜋
−𝑝 =

1

3

3

2
−

1

2
 𝐻𝑆𝐼

3

2
−

1

2
+

2

3

1

2
−

1

2
 𝐻𝑆𝐼

1

2
−

1

2
=

1

3

3

2
 𝐻𝑆𝐼

3

2
+

2

3

1

2
 𝐻𝑆𝐼

1

2
=

1

3
𝑀3 +

2

3
𝑀1



Matrix element of process (b) : 𝜋−𝑝  𝐻𝑆𝐼 𝜋
−𝑝

=
1

3

3

2
−

1

2
 𝐻𝑆𝐼

3

2
−

1

2
−

2

3

3

2
−

1

2
 𝐻𝑆𝐼

1

2
−

1

2
−

2

3

1

2
−

1

2
 𝐻𝑆𝐼

3

2
−

1

2
+

2

3

1

2
−

1

2
 𝐻𝑆𝐼

1

2
−

1

2

=
1

3

3

2
 𝐻𝑆𝐼

3

2
+

2

3

1

2
 𝐻𝑆𝐼

1

2

=
1

3
𝑀3 +

2

3
𝑀1 where from orthogonality

3

2
−

1

2
 𝐻𝑆𝐼

1

2
−

1

2
=

1

2
−

1

2
 𝐻𝑆𝐼

3

2
−

1

2
=0

Matrix element of process (c) : 𝜋0𝑛  𝐻𝑆𝐼 𝜋
−𝑝

=
√2

3

3

2
−

1

2
 𝐻𝑆𝐼

3

2
−

1

2
+

1

3

3

2
−

1

2
 𝐻𝑆𝐼

1

2
−

1

2
−

2

3

1

2
−

1

2
 𝐻𝑆𝐼

3

2
−

1

2
−

√2

3

1

2
−

1

2
 𝐻𝑆𝐼

1

2
−

1

2

=
√2

3

3

2
 𝐻𝑆𝐼

3

2
−

√2

3

1

2
 𝐻𝑆𝐼

1

2

=
√2

3
𝑀3 −

√2

3
𝑀1

For Δ resonance (𝐼 =
3

2
) 𝑀3 ≫ 𝑀1 Therefore, 𝜎𝑎: 𝜎𝑏: 𝜎𝑐 = 𝑀3

2:
1

9
𝑀3

2:
2

9
𝑀3

2 = 9: 1: 2

For 𝑁∗ resonance (𝐼 =
1

2
) 𝑀1 ≫ 𝑀3 Therefore, 𝜎𝑎: 𝜎𝑏: 𝜎𝑐 = 0:

4

9
𝑀1

2:
2

9
𝑀1

2 = 0: 2:1



Σ0 1915 𝑀𝑒𝑉 is an electrically neutral baryon with 𝐼 = 1, 𝐼3 = 0, 

(a) Σ0 →  𝐾0 + 𝑛 & (𝑏)Σ0 → 𝐾− + 𝑝 and estimate 
Γ 𝐾0𝑛

Γ𝐾−𝑝

Initial States :

Σ0: |  10

 𝐾0 + 𝑛 ∶  
1

2

1

2
 

1

2
−

1

2
=

1

2
|  10 +

1

2
|  00

K− + 𝑝 ∶  
1

2
−

1

2
 

1

2

1

2
=

1

2
|  10 −

1

2
|  00

 𝐾0𝑛  𝐻𝑆𝐼 Σ
0 =

1

√2
10  𝐻𝑆𝐼 10 +

1

√2
00  𝐻𝑆𝐼 10 =

1

√2
1  𝐻𝑆𝐼 1 =

1

√2
𝑀1

Γ 𝐾0𝑛 𝛼
1

2
𝑀1

2

𝐾−𝑝  𝐻𝑆𝐼 Σ
0 =

1

√2
10  𝐻𝑆𝐼 10 −

1

√2
00  𝐻𝑆𝐼 10 =

1

√2
1  𝐻𝑆𝐼 1 =

1

√2
𝑀1

Γ𝐾−𝑝 𝛼
1

2
𝑀1

2

Therefore, 
Γ 𝐾0𝑛

Γ𝐾−𝑝
= 1


