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Quantum Electrodynamics



Feynman Rules for QED (Interaction between fermions and photons)

To compute the amplitude , 𝑀, associated with a particular Feynman diagram (FD), we proceed as follows:

Ψ~𝑏 𝑘, 𝑠 𝑢 𝑘, 𝑠 𝑒−𝑖𝑘𝑥 + 𝑑† 𝑘, 𝑠 𝑣 k, s eikx

𝑏, 𝑏† represent operators for annihilation of particle and creation of particle 
𝑑, 𝑑† represent operators for annihilation of antiparticle and creation of antiparticle 

ℒ𝑄𝐸𝐷 = 𝑖 Ψ 𝑖𝑔𝛾
𝜇 Ψ𝐴𝜇





𝑒 − 𝜇 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑃𝑟𝑜𝑐𝑒𝑠𝑠



𝑀 2 =Average of initial spin & sum over final states

• Initial spins being random, average over initial spins are taken

• In final states particles are detected in a particular direction, hence those are specified. Sum of final spins are 
considered.

𝑀 2 =
𝑔𝑒
4

𝑝1 − 𝑝3
4
 𝑢 3 𝛾𝜇𝑢(1)  𝑢 4 𝛾𝜇𝑢(2)  𝑢 3 𝛾

𝜈𝑢 1 ∗  𝑢 4 𝛾𝜈𝑢 2
∗

Let us simplify the product of either 1st and 3rd square bracketed term or 2nd and 4th ones.

Consider a general expression,

𝐺 =  𝑢 𝑎 Γ1𝑢(𝑏)  𝑢 𝑎 Γ2𝑢(𝑏)
∗ ;    𝑎 & 𝑏 stand for spins and momenta Γ1 and Γ2 are 4 × 4 matrices.

 𝑢 𝑎 Γ2𝑢 𝑏
∗ =  𝑢 𝑎 Γ2𝑢 𝑏

† = 𝑢† 𝑎 𝛾0Γ2𝑢 𝑏
†

= 𝑢† 𝑏 Γ2
† 𝛾0 †𝑢 𝑎 = 𝑢† 𝑏 𝛾0𝛾0Γ2

†𝛾0𝑢 𝑎 =  𝑢(𝑏) Γ2𝑢 𝑎

Using 𝛾0 2 = 1 & 𝛾0 † = 𝛾0 and defining  Γ2 = 𝛾
0 Γ2
†𝛾0

∴ 𝐺 =  𝑢 𝑎 Γ1𝑢(𝑏)  𝑢 𝑎 Γ2𝑢(𝑏)
∗=  𝑢 𝑎 Γ1𝑢(𝑏)  𝑢 𝑏  Γ2𝑢 𝑎

 𝑠 𝑢 𝑢 = 𝑝 +𝑚 ; 𝑠 𝑣  𝑣 = 𝑝 −𝑚 and 𝑝 = 𝑝𝜇𝛾𝜇
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 𝑠𝑏 𝐺 =  𝑢 𝑎 Γ1 𝑝𝑏 +𝑚𝑏
 Γ2𝑢(𝑎) =  𝑢 𝑎 𝑄𝑢(𝑎) defining 𝑄 = Γ1 𝑝𝑏 +𝑚𝑏  Γ2

 

𝑠𝑎

 

𝑠𝑏

𝐺 = 

𝑠𝑎

 𝑢 𝑎 𝑄𝑢(𝑎) = 

𝑠𝑎

 𝑢𝑖 𝑎 𝑄𝑖𝑗𝑢𝑗 𝑎 = 𝑄𝑖𝑗 

𝑠𝑎

𝑢𝑗 𝑎  𝑢𝑖 𝑎 = 𝑄𝑖𝑗 𝑝𝑎 +𝑚𝑎 𝑗𝑖

= 𝑇𝑟 𝑄 𝑝𝑎 +𝑚𝑎 = 𝑇𝑟 Γ1 𝑝𝑏 +𝑚𝑏  Γ2 𝑝𝑎 +𝑚𝑎

Now,

𝑀 2 =
1

4

𝑔𝑒
4

𝑝1−𝑝3
4 𝑇𝑟 𝛾

𝜇 𝑝1 +𝑚 𝛾
𝜈 𝑝3 +𝑚 × 𝑇𝑟 𝛾𝜇 𝑝2 +𝑀 𝛾𝜈 𝑝4 +𝑀 ----------- (1)

𝑚,𝑀 are mass of electron and muon respectively.

This is commonly known as  Casimir’s Trick of simplification. Now Trace technology is needed to further 
simplify the above expression.  

Continued…

Spin average over initial spins , for spin ½ particles . 
1

2𝑠1+1 2𝑠2+1



1. 𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝑔𝜇𝜈

2. 𝑔𝜇𝜈𝑔
𝜇𝜈 = 4

3. 𝛾𝜇𝛾
𝜇 = 4

Trace theorems/formulae needed for simplifications: 

1. 𝑇𝑟 𝐴𝐵 = 𝑇𝑟 𝐵𝐴

2. 𝑇𝑟 𝐴𝐵𝐶 = 𝑇𝑟 𝐵𝐶𝐴 = 𝑇𝑟(𝐶𝐴𝐵)

3. 𝑇𝑟 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝛾 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 = 0

4. 𝑇𝑟 1 = 4

5. 𝑇𝑟 𝛾𝜇𝛾𝜈 = 4𝑔𝜇𝜈

6. 𝑇𝑟 𝛾𝜇𝛾𝜈𝛾𝜆𝛾𝜎 = 4 𝑔𝜇𝜈𝑔𝜆𝜎 − 𝑔𝜇𝜆𝑔𝜈𝜎 + 𝑔𝜇𝜎𝑔𝜈𝜆

Continued…



From Eq. (1) :       

𝑇𝑟 𝛾𝜇 𝑝1 +𝑚 𝛾
𝜈 𝑝3 +𝑚 = 𝑇𝑟 𝛾

𝜇𝑝1𝛾
𝜈𝑝3 +𝑚 𝑇𝑟 𝛾

𝜇𝑝1𝛾
𝜈 + 𝑇𝑟 𝛾𝜇𝛾𝜈𝑝3 +𝑚

2𝑇𝑟 𝛾𝜇𝛾𝜈

• Square bracketed term in the above expression vanishes due to  Trace theorem 3.

𝑇𝑟 𝛾𝜇𝑝1𝛾
𝜈𝑝3 = 𝑝1 𝜆 𝑝3 𝜎𝑇𝑟 𝛾

𝜇𝛾𝜆𝛾𝜈𝛾𝜎 = 𝑝1 𝜆 𝑝3 𝜎4 𝑔
𝜇𝜆𝑔𝜈𝜎 − 𝑔𝜇𝜈𝑔𝜆𝜎 + 𝑔𝜇𝜎𝑔𝜆𝜈

= 4 𝑝1
𝜇
𝑝3
𝜈 − 𝑔𝜇𝜈 𝑝1 ∙ 𝑝3 + 𝑝3

𝜇
𝑝1
𝜈 using Trace theorem 6

∴ 𝑇𝑟 𝛾𝜇 𝑝1 +𝑚 𝛾
𝜈 𝑝3 +𝑚 = 4 𝑝1

𝜇
𝑝3
𝜈 + 𝑝3

𝜇
𝑝1
𝜈 + 𝑔𝜇𝜈 𝑚2 − 𝑝1 ∙ 𝑝3 using Trace theorem 5

Similarly, 

𝑇𝑟 𝛾𝜇 𝑝2 +𝑀 𝛾𝜈 𝑝4 +𝑀 = 4 𝑝2
𝜇
𝑝4
𝜈 + 𝑝4

𝜇
𝑝2
𝜈 + 𝑔𝜇𝜈 𝑀2 − 𝑝2 ∙ 𝑝4

Now, Eq. (1) becomes,

𝑀 2 =
1

4

𝑔𝑒
4

𝑝1−𝑝3
4 16 𝑝1

𝜇
𝑝3
𝜈 + 𝑝3

𝜇
𝑝1
𝜈 + 𝑔𝜇𝜈 𝑚2 − 𝑝1 ∙ 𝑝3 × 𝑝2

𝜇
𝑝4
𝜈 + 𝑝4

𝜇
𝑝2
𝜈 + 𝑔𝜇𝜈 𝑀2 − 𝑝2 ∙ 𝑝4

=
8𝑔𝑒
4

𝑝1−𝑝3
4 𝑝1 ∙ 𝑝2 𝑝3 ∙ 𝑝4 + 𝑝1 ∙ 𝑝4 𝑝2 ∙ 𝑝3 −𝑀

2 𝑝1 ∙ 𝑝3 −𝑚
2 𝑝2 ∙ 𝑝4 + 2𝑚

2𝑀2 --------- (2)

Continued…



In Laboratory frame, assuming muon as target particle with infinitely heavy and electron as bombarding 
particle 

Target particle does not recoil and assume 𝐸1 = 𝐸3 = 𝐸

Momentum assignment: 𝑝1 ≡ 𝐸,  𝑝1 ; 𝑝2 ≡ 𝑀, 0 ; 𝑝3 = 𝐸,  𝑝3 ; 𝑝4 ≡ (𝑀, 0)

3-momentum conservation gives :  𝑝1 +0 =  𝑝3 +0 =>  𝑝1 =  𝑝3 = 𝑝 (Let)

𝑝1 − 𝑝3
2 = 𝐸 − 𝐸 2 −  𝑝1 −  𝑝3

2 =  𝑝1
2 +  𝑝3

2 − 2  𝑝1  𝑝3 cos 𝜃 = −2𝑝
2 1 − cos𝜃 = −4𝑝2 sin2

𝜃

2

∴ 𝑝1 − 𝑝3
4 = 16𝑝4 sin4

𝜃

2

Continued…

(𝐸3,  𝑝3)

𝜃

(𝐸1,  𝑝1) 𝑀
Target (Muon at Rest )



𝑝1 ∙ 𝑝2 = 𝐸𝑀 ; 𝑝3 ∙ 𝑝4 = 𝐸𝑀 ; 𝑝1∙ 𝑝4 = 𝐸𝑀 ; 𝑝2 ∙ 𝑝3 = 𝐸𝑀

𝑝1 ∙ 𝑝3 = 𝐸
2 −  𝑝1 ∙  𝑝3 = 𝐸

2 − 𝑝2 cos 𝜃 = 𝑝2 +𝑚2 −𝑝2cos𝜃 = 𝑚2 + 2𝑝2 sin2
𝜃

2

𝑝2 ∙ 𝑝4 = 𝑀
2

Now substituting all these in Eq. (2) we get,

𝑀 2 =
𝑔𝑒
4𝑀2

𝑝4 sin4
𝜃

2

𝐸2 − 𝑝2 sin2
𝜃

2
=
𝑔𝑒
4𝑀2𝐸2

𝑝4 sin4
𝜃

2

1 − 𝑣2 sin2
𝜃

2
using 𝑣 =

𝑝

𝐸

Plugging the above expression in differential scattering cross-section formula ,

𝑑𝜎

𝑑Ω 𝑝𝑜𝑖𝑛𝑡
=
𝑑𝜎

𝑑Ω 𝑀𝑜𝑡𝑡
=

1

8𝜋𝑀

2
𝑀 2 =

𝛼2𝐸2

4𝑝4 sin4
𝜃

2

1 − 𝑣2 sin2
𝜃

2
------------ (3)

Where ge = 4𝜋𝛼

In the non-relativistic limit, the result matches with the Rutherford formula,

𝑑𝜎

𝑑Ω 𝑅𝑢𝑡ℎ𝑒𝑟𝑓𝑜𝑟𝑑
=
𝛼2𝐸2

4𝑝4 sin4
𝜃

2

≈
𝛼2

16𝐸2 sin4
𝜃

2

assuming 𝑍 = 1

Continued…   



Eq. (3) shows that in the non-relativistic limit (𝑣 ≪ 𝑐) , the result does not depend on electron spin because it 
agrees with the Rutherford result. It means that for 𝑣 → 0, the effect of spin can not be stated.   Why ???

The spin direction does not change in the scattering of non-relativistic electrons. This is due to the fact that
electrons interact dominantly via electric field which can not flip the spin direction. At higher energies it is the
magnetic field which flips the spins. Hence, only in the relativistic limit when 𝑣 is large enough to be
compared with 𝑐 , the spin flipping occurs due to magnetic field.

Electrons are used as good probes for revealing the substructure of protons. This is because of the fact that
electrons do not take part in strong interactions. By measuring the angular distribution of scattered electrons
from protons and comparing it with the cross-section for scattering electrons from a point charge we can
estimate the charge radius of protons.

𝑑𝜎

𝑑Ω
=
𝑑𝜎

𝑑Ω 𝑝𝑜𝑖𝑛𝑡
𝐹 𝑞 2 ; where 𝑞 = 𝑝𝑖 − 𝑝𝑓 i.e., momentum transfer between the incident 𝑒 and 𝑝

• 𝐹 𝑞 is the Fourier transform of the charge distribution.  F  𝑞 =  𝜌  𝑥 𝑒𝑖𝑞∙  𝑥 𝑑3𝑥

• Normalization condition :   𝜌  𝑥 𝑑3𝑥 = 1

• 𝐹 0 = 1 using the normalization condition

Continued…



Considering the recoil of muon the pictorial representation of 𝑒 − 𝜇 scattering in laboratory frame .

Assume 𝐸1 = 𝐸 & 𝐸3 = 𝐸
′

Neglecting the mass of electron in Eq. (2) we get,

𝑀 2 =
8𝑔𝑒
4

𝑝1−𝑝3
4 𝑝1 ∙ 𝑝2 𝑝3 ∙ 𝑝4 + 𝑝1 ∙ 𝑝4 𝑝2 ∙ 𝑝3 −𝑀

2 𝑝1 ∙ 𝑝3 ---------- (4)  

𝐸1 = 𝐸 ≈  𝑝1 ; 𝐸3 = 𝐸
′ ≈  𝑝3 ; 𝑝1

2 = 𝑝3
2 ≈ 0 ;   𝑞 = 𝑝1 − 𝑝3 = 𝑝4 − 𝑝2

q2 = 𝑝1 − 𝑝3
2 = −2𝑝1 ∙ 𝑝3 = −2𝐸𝐸

′ 1 − cos 𝜃 = −4𝐸𝐸′ sin2
𝜃

2

Continued…

(𝐸3,  𝑝3)

(𝐸1,  𝑝1)

θ 

(𝑀, 0)

(𝐸4,  𝑝4)

𝜙



𝑝1 ∙ 𝑝2 = 𝐸𝑀 ; 𝑝3 ∙ 𝑝4 = 𝑝3 ∙ 𝑝1 − 𝑝3 + 𝑝2 = 𝑝3 ∙ 𝑝1 − 0 + 𝑝3 ∙ 𝑝2 = −
𝑞2

2
+ 𝐸′𝑀

𝑝2 ∙ 𝑝3 = 𝐸
′𝑀 ; 𝑝1 ∙ 𝑝4 = 𝑝1 ∙ 𝑝1 − 𝑝3 + 𝑝2 = 0 − 𝑝1 ∙ 𝑝3 + 𝑝1 ∙ 𝑝2 = +

𝑞2

2
+ 𝐸𝑀

𝑀 2 =
8𝑔𝑒
4

𝑞4
𝐸𝑀 −

𝑞2

2
+ 𝐸′𝑀 + 𝐸′𝑀

𝑞2

2
+ 𝐸𝑀 +

𝑀2𝑞2

2

=
8𝑔𝑒
4

𝑞4
2𝐸𝐸′𝑀2 −

𝑀 𝐸 − 𝐸′ 𝑞2

2
+
𝑀2𝑞2

2

=
8𝑔𝑒
4

𝑞4
2𝑀2𝐸𝐸′ 1 +

𝑞2

4𝐸𝐸′
−
𝑞2

2𝑀2
𝐸 − 𝐸′

2𝐸𝐸′

=
8𝑔𝑒
4

𝑞4
2𝑀2𝐸𝐸′ cos2

𝜃

2
−
𝑞2

2𝑀2
sin2
𝜃

2

Continued…



𝑑𝜎

𝑑Ω 𝑙𝑎𝑏
=

1

8𝜋𝑀

2
𝑀 2 =

𝛼2

4𝐸2 sin4
𝜃

2

𝐸′

𝐸
cos2

𝜃

2
−
𝑞2

2𝑀2
sin2
𝜃

2
--------- (5)

Problem: Show that 
𝐸′

𝐸
=

1

1+
2𝐸

𝑀
sin2
𝜃

2

The above formula is very powerful for exploring the internal structure of a target in which the target is bombarded
with a beam of high-energy electrons and to observe the angular distribution and energy of the scattered electrons.
Such experiments have enormous impact on understanding the structure of matter. This technique will be used in
revealing the substructure of PROTON.

Electron-Proton scattering experiment is very useful in revealing the substructure of proton depending upon the 
energy of the bombarding electron. 

According to de’Broglie hypothesis 𝜆 =
ℎ

2𝑚𝐸
where 𝑚 is mass of 𝑒 and 𝐸 is the energy of the bombarding 𝑒.

For probing smaller dimension one requires to increase the energy of the bombarding 𝑒.

• 𝜆 > 𝑑𝑝 : Electron sees proton as a point particle 

• 𝜆 ≈ 𝑑𝑝 : Electron sees the proton as an extended object instead of a point particle.

• 𝜆 < 𝑑𝑝 : Electron sees that proton is made up of more fundamental particles. 

• 𝜆 ≪ 𝑑𝑝 : Electron sees gluons and quarks inside the proton. 

Continued…



If proton were a point like particle , the differential scattering cross-section would have been the same as 
electron-muon scattering except the fact that muon mass would be replaced by proton mass. Hence,

𝑑𝜎

𝑑Ω 𝑙𝑎𝑏
=

1

8𝜋𝑀

2
𝑀 2 =

𝛼2

4𝐸2 sin4
𝜃

2

𝐸′

𝐸
cos2

𝜃

2
−
𝑞2

2𝑀2
sin2
𝜃

2

The piece of information unknown to us is how does proton couple with virtual photon. The vertex factor at 
the proton-photon vertex is denoted by 𝑖Γ𝜈.

Properties that Γ𝜈 must satisfy :

• Lorentz vector

• Hermiticity

• Gauge invariance /Ward identity 

Elastic 𝑒 − 𝑝 Scattering 



QED Vertex factor at electron-photon vertex (Known) : 𝑖𝑔𝑒𝛾
𝜇

QED Vertex factor at proton-photon vertex (Unknown!!) :  𝑖𝑔𝑒Γ
𝜇

Γ𝜇 = 𝐴1 𝑞
2 𝛾𝜇 + 𝐴2 𝑞

2 𝑝2
𝜇
+ 𝐴3 𝑞

2 𝑝4
𝜇
+ 𝑖𝐴4 𝑞

2 𝜎𝜇𝜈𝑝2𝜈 + 𝑖𝐴5 𝑞
2 𝜎𝜇𝜈𝑝4𝜈 -------- (6)

The coefficients are only function of 𝑞2, other scalars constructed at that vertex may be expressed as function 
of 𝑞2 and 𝑀2. Note that in Eq. (6) 𝛾5 term is not considered as parity conservation is enforced.  

Consider the term,

J𝜇 =  u 4 Γ𝜇𝑢 2 =  𝑢 4 𝐴1 𝑞
2 𝛾𝜇 + 𝐴2 𝑞

2 𝑝2
𝜇
+ 𝐴3 𝑞

2 𝑝4
𝜇
+ 𝑖𝐴4 𝑞

2 𝜎𝜇𝜈𝑝2𝜈 + 𝑖𝐴5 𝑞
2 𝜎𝜇𝜈𝑝4𝜈 𝑢 2

Using Dirac equation 𝛾𝜇𝑝𝜇 −𝑚 𝑢 = 0 and  u 𝛾𝜇𝑝𝜇 −𝑚 = 0 and the gauge invariance condition 𝑞𝜇J
𝜇 = 0

𝑞𝜇 = 𝑝4
𝜇
− 𝑝2
𝜇

& 𝜎𝜇𝜈 =
𝑖

2
𝛾𝜇𝛾𝜈 − 𝛾𝜈𝛾𝜇

We get, 𝐴2 = 𝐴3 & 𝐴4 = −𝐴5

Hence we obtain ,

 u 4 Γ𝜇𝑢 2 =  𝑢 4 𝐴1𝛾
𝜇 + 𝐴3 𝑝2 + 𝑝4

𝜇 + 𝑖𝐴5𝜎
𝜇𝜈 𝑝4 − 𝑝2 𝜈 𝑢 2 -------- (7)

Continued…



Gordon Identity :  𝑢(4)𝛾𝜇𝑢(2) =
1

2𝑚
 𝑢(4) 𝑝4 + 𝑝2

𝜇 + 𝑖𝜎𝜇𝜈 𝑝4 − 𝑝2 𝜈 𝑢(2) ------- (8)

Using Eq. (8), Eq. (7) becomes,

 u 4 Γ𝜇𝑢 2 =  𝑢 4 𝐴1𝛾
𝜇 + 2𝑚𝐴3𝛾

𝜇 − 𝑖𝐴3𝜎
𝜇𝜈 𝑝4 − 𝑝2 𝜈 + 𝑖𝐴5𝜎

𝜇𝜈 𝑝4 − 𝑝2 𝜈 𝑢 2

=  𝑢 4 𝐹1𝛾
𝜇 +

𝑖

2𝑀
𝐹2𝜎
𝜇𝜈 𝑝4 − 𝑝2 𝜈 𝑢 2 ----------- (9)

Redefining 𝐹1 = 𝐴1 + 2𝑚𝐴3 and 
𝐹2

2𝑀
= 𝐴5 − 𝐴3

For simplicity using Eq. (8), we rewrite Eq. (9) as follows, (Replace 𝑚 by 𝑀)

 u 4 Γ𝜇𝑢 2 =  𝑢 4 𝐹1 + 𝐹2 𝛾
𝜇 −

1

2𝑀
𝐹2 𝑝4 + 𝑝2

𝜇 𝑢 2 ------------- (10)

From Eq. (1) ,   𝑀 2 =
1

4

𝑔𝑒
4

𝑝1−𝑝3
4 𝑇𝑟 𝛾

𝜇 𝑝1 +𝑚 𝛾
𝜈 𝑝3 +𝑚 × 𝑇𝑟 Γ𝜇 𝑝2 +𝑀 Γ𝜈 𝑝4 +𝑀

𝑇𝑟 𝛾𝜇 𝑝1 +𝑚 𝛾
𝜈 𝑝3 +𝑚 = 4 𝑝1

𝜇
𝑝3
𝜈 + 𝑝3

𝜇
𝑝1
𝜈 + 𝑔𝜇𝜈 𝑚2 − 𝑝1 ∙ 𝑝3 ≡ 𝐿

𝜇𝜈 ----------- (11)

For simplification  Γ𝜇 = 𝐹1 + 𝐹2 𝛾
𝜇 −

1

2𝑀
𝐹2 𝑝4 + 𝑝2

𝜇 ≡ 𝐴𝛾𝜇 + 𝐵𝑝𝜇

Defining 𝐴 = 𝐹1 + 𝐹2 𝐵 = 𝐹2 𝑝 = 𝑝2 + 𝑝4

Continued…



𝑇𝑟 Γ𝜇 𝑝2 +𝑀 Γ𝜈 𝑝4 +𝑀 =𝑇𝑟 𝐴𝛾𝜇 + 𝐵𝑝𝜇 𝑝2 +𝑀 𝐴𝛾𝜈 + 𝐵𝑝𝜈 𝑝4 +𝑀 ≡ 𝐻𝜇𝜈

Only traces containing odd number of 𝛾 matrices will be non-vanishing . On simplification, we get

𝐴2𝑇𝑟 𝛾𝜇 𝑝2 +𝑀 𝛾𝜈 𝑝4 +𝑀 + 𝐵
2𝑝𝜇𝑝𝜈𝑇𝑟 𝑝2 +𝑀 𝑝4 +𝑀 + 𝐴𝐵𝑝𝜈𝑇𝑟 𝛾𝜇 𝑝2 +𝑀 𝑝4 +𝑀 +

𝐴𝐵𝑝𝜇𝑇𝑟 𝑝2 +𝑀 𝛾𝜈 𝑝4 +𝑀

= 𝐴2𝑇𝑟 𝛾𝜇 𝑝2 +𝑀 𝛾𝜈 𝑝4 +𝑀 + 𝐵
2𝑝𝜇𝑝𝜈 𝑇𝑟 𝑝2𝑝4 +𝑀

2𝑇𝑟 𝟙 + 𝐴𝐵𝑝𝜈 𝑀𝑇𝑟 𝛾𝜇𝑝2 +𝑀𝑇𝑟 𝛾𝜇𝑝4

+𝐴𝐵𝑝𝜇 𝑀𝑇𝑟 𝑝2𝛾𝜈 +𝑀𝑇𝑟 𝛾𝜈𝑝4

• 𝐴2𝑇𝑟 𝛾𝜇 𝑝2 +𝑀 𝛾𝜈 𝑝4 +𝑀 = 4𝐴
2 𝑝2
𝜇
𝑝4
𝜈 + 𝑝4

𝜇
𝑝2
𝜈 + 𝑔𝜇𝜈 𝑀2 − 𝑝2 ∙ 𝑝4 = 𝐻𝜇𝜈

𝑎 ------ (12)

• 𝐵2𝑝𝜇𝑝𝜈 𝑇𝑟 𝑝2𝑝4 +𝑀
2𝑇𝑟 𝟙 = 4𝐵2𝑝𝜇𝑝𝜈 𝑝2 ∙ 𝑝4 +𝑀

2 = 𝐻𝜇𝜈
𝑏 ---------- (13)

• 𝐴𝐵𝑝𝜈 𝑀𝑇𝑟 𝛾𝜇𝑝2 +𝑀𝑇𝑟 𝛾𝜇𝑝4 = 4𝐴𝐵𝑀𝑝𝜈 𝑝2 + 𝑝4 𝜇 ----- (c1)

• 𝐴𝐵𝑝𝜇 𝑀𝑇𝑟 𝑝2𝛾𝜈 +𝑀𝑇𝑟 𝛾𝜈𝑝4 = 4𝐴𝐵𝑀𝑝𝜇 𝑝2 + 𝑝4 𝜈 ----- (c2)

• 𝐻𝜇𝜈
𝑐 =  8𝐴𝐵𝑀 𝑝2 + 𝑝4 𝜈 𝑝2 + 𝑝4 𝜇 (Adding c1 & c2)      ------- (14)

𝑀 2 =
1

4

𝑔𝑒
4

𝑝1 − 𝑝3
4
𝐿𝜇𝜈𝐻𝜇𝜈 =

1

4

𝑔𝑒
4

𝑞4
𝐿𝜇𝜈𝐻𝜇𝜈

Continued…



𝐿𝜇𝜈𝐻𝜇𝜈
𝑎 = 64 𝐹1 + 𝐹2

2𝑀2𝐸𝐸′ cos2
𝜃

2
−
𝑞2

2𝑀2
sin2
𝜃

2
(Using Eq. (11) & (12)) 

𝐿𝜇𝜈𝐻𝜇𝜈
𝑏 = 4𝐿𝜇𝜈𝐹2

2 𝑝2 + 𝑝4 𝜇 𝑝2 + 𝑝4 𝜈 𝑝2 ∙ 𝑝4 +𝑀
2 (Using Eq. (11) & (13))

𝐿𝜇𝜈𝐻𝜇𝜈
𝑐 = 8𝐿𝜇𝜈 𝐹1 + 𝐹2 𝐹2𝑀 𝑝2 + 𝑝4 𝜈 𝑝2 + 𝑝4 𝜇 (Using Eq. (11) & (14)) 

Elastic Scattering Kinematics :

𝑝1 ≡ 𝐸,  𝑝1 ; 𝑝2 ≡ 𝑀, 0 ; 𝑝3 ≡ 𝐸
′,  𝑝3 &  𝑝1 + 𝑝2 = 𝑝3 + 𝑝4 & 𝑚𝑒 ≈ 0

𝑑𝜎

𝑑Ω 𝑙𝑎𝑏
=

1

8𝜋𝑀

2
𝑀 2 =

𝛼2

4𝐸2 sin4
𝜃

2

𝐸′

𝐸
𝐹1
2 −

𝑞2

4𝑀2
𝐹2
2 cos2

𝜃

2
− 𝐹1 + 𝐹2

2 𝑞
2

2𝑀2
sin2
𝜃

2
-------- (15)  

This is known as Rosenbluth Formula for Elastic 𝑒 − 𝑝 scattering process.

• Two form factors 𝐹1,2 𝑞
2 parametrize our ignorance about the detailed internal substructure of the proton   

represented by the blob in the FD of elastic 𝑒 − 𝑝 scattering.

• These form factors can be determined experimentally by measuring 
𝑑𝜎

𝑑Ω
as a function of 𝜃 and 𝑞2.

• If proton were a point like Dirac fermion then Eq. (15) turns into Eq. (5) with 𝐹1(𝑞
2) = 1 and 𝐹2(𝑞

2) = 0
for all 𝑞2.  

Continued…



Instead of the functions  𝐹1(𝑞
2) and 𝐹2(𝑞

2) one often introduces the so-called electric and magnetic form factors 

denoted by 𝐺𝐸 𝑞
2 and 𝐺𝑀 𝑞

2 in such a way so that no interference term occurs in the cross-section.

𝐺𝐸 𝑞
2 = 𝐹1

2(𝑞2) −
𝑞2

4𝑀2
𝐹2
2(𝑞2) &      𝐺𝑀 𝑞

2 = 𝐹1 𝑞
2 + 𝐹2 (𝑞

2)

Now Eq. (15) becomes

𝑑𝜎

𝑑Ω 𝑙𝑎𝑏
=

𝛼2

4𝐸2 sin4
𝜃

2

𝐸′

𝐸

𝐺𝐸
2(𝑞2)+𝜏𝐺𝑀

2 (𝑞2)

1+𝜏
cos2

𝜃

2
+ 2𝜏𝐺𝑀

2 (𝑞2) sin2
𝜃

2
--------- (16)

Where, the Lorentz invariant quantity, 𝜏 = −
𝑞2

4𝑀2

• The form factors 𝐺𝐸 𝑞
2 and 𝐺𝑀 𝑞

2 could be interpreted as the Fourier transforms of the charge and

magnetic moment distributions of the proton. Unfortunately, the recoil of proton makes it impossible.

• However, it is possible to show that the form factors 𝐺𝐸 𝑞
2 and 𝐺𝑀 𝑞

2 are closely related to the proton

charge and the magnetic moment distributions, respectively, in a particular Lorentz frame, called Breit

frame, defined by  𝑝4 = −  𝑝2

Continued…



Scattering of an electron in a static potential due to an extended charge distribution:

The potential at  𝑟 from the center is given by :

𝑉  𝑟 =  
𝑄𝜌  𝑟′

4𝜋  𝑟−  𝑟′
𝑑3  𝑟′ with  𝜌  𝑟 𝑑3  𝑟 = 1 (Normalization)

Considering 1st order perturbation theory the matrix element is given by :

𝑀𝑓𝑖 = 𝜓𝑓 𝑉  𝑟 𝜓𝑖 =  𝑒
−𝑖  𝑝3∙  𝑟𝑉  𝑟 𝑒𝑖  𝑝1∙  𝑟 𝑑3  𝑟

=  𝑒𝑖𝑞∙  𝑟
𝑄𝜌  𝑟′

4𝜋  𝑟 −  𝑟′
𝑑3  𝑟′𝑑3  𝑟

=  𝑒𝑖𝑞∙(  𝑟−  𝑟
′) 𝑒𝑖𝑞∙  𝑟

′ 𝑄𝜌  𝑟′

4𝜋  𝑟 −  𝑟′
𝑑3  𝑟′𝑑3  𝑟

Continued…



Where,  𝑞 =  𝑝1 −  𝑝3.  Keeping  𝑟′ fixed and integrate over 𝑑3  𝑟 with substitution 𝑅 =  𝑟 −  𝑟′

𝑀𝑓𝑖 =  𝑒
𝑖𝑞∙𝑅
𝑄

4𝜋 𝑅
𝑑3𝑅 𝜌  𝑟′ 𝑒𝑖𝑞∙  𝑟

′
𝑑3  𝑟′ = 𝑀𝑓𝑖 𝑝𝑜𝑖𝑛𝑡

𝐹  𝑞

Where 𝐹  𝑞 is Fourier transform of 𝜌  𝑟′ . This resulting matrix element is equivalent to the matrix element 

of scattering from a point source multiplied by the form factor : 𝐹  𝑞 =  𝜌  𝑟 𝑒𝑖𝑞∙  𝑟𝑑3  𝑟

𝐹  𝑞 =  𝜌  𝑟 𝑒𝑖𝑞∙  𝑟𝑑3  𝑟

If  𝑞 ≪ 1, we can write 𝐹  𝑞 =  1 + 𝑖  𝑞 ∙  𝑟 −
𝑞∙  𝑟 2

2
+⋯ . 𝜌  𝑟 𝑒𝑖𝑞∙  𝑟𝑑3  𝑟

= 1 −
1

6
 𝑞 2 𝑟2 +⋯ = 𝐹  𝑞 2 ------

Here, we have assumed 𝜌(𝑟) to be spherically symmetric, that is, a function of 𝑟 =  𝑟 only. The small-angle 
scattering therefore just measures the mean square radius 𝑟2 of the charge distribution. This is because in 
the small  𝑞 limit the electron has large de’Broglie wavelength and can resolve only the size of the charge 
distribution  𝜌 𝑟 and is unable to probe the detailed structure.

Continued…



Rutherford scattering cross-section formula:

𝑑𝜎

𝑑Ω
𝑅𝑢𝑡ℎ𝑒𝑟𝑓𝑜𝑟𝑑

=
𝛼2

16𝐸𝑘
2 sin4
𝜃
2

This formula could have been derived by considering the scattering of a non-relativistic particle (𝐸𝑘 =
1

2
𝑚𝑣2)

in the static coulomb potential of the proton 𝑉( 𝑟) without any consideration of the interaction due to intrinsic
magnetic moments of electron or proton. Hence, we can conclude that in the non-relativistic limit only the
interaction between electric charge of the particles matters.

In Rutherford scattering we consider the limit where the target recoil is neglected and the scattered particle is
non-relativistic.

Mott scattering cross-section formula: 

When we consider the recoil of the target to be neglected and the scattered particle is relativistic (i.e., the mass 
of electron being neglected), the scattering is called Mott scattering. (𝐸 ≈ 𝐸𝑘 for 𝐸 ≫ 𝑚)

𝑑𝜎

𝑑Ω
𝑀𝑜𝑡𝑡

=
𝛼2

4𝐸2 sin4
𝜃
2

cos2
𝜃

2

Continued…
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𝑑𝜎

𝑑Ω
𝑀𝑜𝑡𝑡

=
𝛼2

4𝐸2 sin4
𝜃
2

cos2
𝜃

2
𝐹  𝑞 2 2

There is nothing new in form factors – similar to diffraction of plane waves in optics. The finite size of 
scattering center introduces a phase difference between plane waves scattered from different points in space. 
If the wavelength is long copared to size of all waves in phase and 𝐹  𝑞 2 =1

NOTE that for point like charge the form factor is unity.

Point like Electron-Proton Scattering:

𝑑𝜎

𝑑Ω 𝑙𝑎𝑏
=

𝛼2

4𝐸2 sin4
𝜃

2

𝐸′

𝐸
cos2

𝜃

2
−
𝑞2

2𝑀2
sin2
𝜃

2
(From eq. (5))

𝑞2 = −4𝐸𝐸′ sin2
𝜃

2
;   Note that 𝑞2 < 0 i.e., Space like.

Show that 𝐸 − 𝐸′ = −
𝑞2

2𝑀

Since 𝑞2 < 0; therefore, 𝐸 − 𝐸′ > 0 that is the scattered electron is always lower in energy than the incoming 
electron.
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𝑑𝜎

𝑑Ω
𝑙𝑎𝑏

=
𝛼2

4𝐸2 sin4
𝜃
2

𝐸′

𝐸
cos2
𝜃

2
−
𝑞2

2𝑀2
sin2
𝜃

2

How do we interpret the equation?

Compare with the Mott equation : 
𝑑𝜎

𝑑Ω 𝑀𝑜𝑡𝑡
=

𝛼2

4𝐸2 sin4
𝜃

2

cos2
𝜃

2
; It is equivalent to scattering of spin ½ 

electron in a fixed electrostatic potential. 

• The term 
𝛼2

4𝐸2 sin4
𝜃

2

is due to static charge distribution considering non-relativistic limit.

• The term 
𝐸′

𝐸
is due to recoil of proton.

• The term cos2
𝜃

2
is due to relativistic effect of the electron. 

• The term −
𝑞2

2𝑀2
sin2
𝜃

2
is magnetic interaction due to the spin-spin interaction.

The above differential cross-section depends on a single parameter. For an electron scattering angle 𝜃, both 
𝑞2and the energy of the scattered electron, 𝐸′, are fixed by kinematics.  

Continued…



Example: 

From elastic scattering kinematics we can obtain the following two relations: 

𝐸′

𝐸
=

𝑀

𝑀+𝐸(1−cos 𝜃)
------- (a)     &    𝑞2 =

2𝑀𝐸2 1−cos 𝜃

𝑀+𝐸(1−cos 𝜃)
---------- (b)

Let us consider 𝑒 − 𝑝 scattering at 𝐸𝑏𝑒𝑎𝑚 = 529.5𝑀𝑒𝑉 and electrons scattered at an angle 𝜃 = 75°

For elastic scattering  using Eq. (a) we get  𝐸′ = 373 𝑀𝑒𝑉 and using Eq. (b) we get 𝑞2 = 294𝑀𝑒𝑉2

Elastic Scattering from a Finite Size Proton:

𝑑𝜎

𝑑Ω
𝑙𝑎𝑏

=
𝛼2

4𝐸2 sin4
𝜃
2

𝐸′

𝐸

𝐺𝐸
2(𝑞2) + 𝜏𝐺𝑀

2 (𝑞2)

1 + 𝜏
cos2
𝜃

2
+ 2𝜏𝐺𝑀

2 (𝑞2) sin2
𝜃

2

Unlike our previous discussions of form factors, here the form factors are function of 𝑞2 rather than  𝑞 2and 
can not simply be considered in terms of the FT of the charge and magnetic moment distributions.

But 𝑞2 = 𝐸 − 𝐸′ 2 −  𝑞 2 =
𝑞4

4𝑀2
−  𝑞 2 => −  𝑞 2 = 𝑞2 1 −

𝑞

2𝑀

2

For 
𝑞2

4𝑀2
≪ 1 we have  −  𝑞 2 ≈ 𝑞2 and hence 𝐺 𝑞2 ≈ 𝐺(  𝑞 2)

Continued…



Hence in the limit 
𝑞2

4𝑀2
≪ 1 we can interpret the structure functions in terms of the FT of the charge and 

magnetic moment distributions.

𝐺𝐸 𝑞
2 ≈ 𝐺𝐸(  𝑞

2) =  𝜌  𝑟 𝑒𝑖𝑞∙  𝑟𝑑3  𝑟

𝐺𝑀 𝑞
2 ≈ 𝐺𝑀(  𝑞

2) =  𝜇  𝑟 𝑒𝑖𝑞∙  𝑟𝑑3  𝑟

Note that in deriving Rosenbluth formula we assumed proton to be spin ½  Dirac particle , i.e.,  𝜇 =
𝑒

𝑀
 𝑆. 

However, the experimentally measured value of proton magnetic moment is larger than that expected for a 

point-like Dirac particle:    𝜇 = 2.79
𝑒

𝑀
 𝑆. 

So for proton expect 

𝐺𝐸(0) =  𝜌  𝑟 𝑑
3  𝑟 = 1 &     𝐺𝑀(0) =  𝜇  𝑟 𝑑

3  𝑟 = 𝜇𝑝 = +2.79

It should be remembered that the anomalous magnetic moment of the proton is a strong evidence that it is not 
a point like particle !!  
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How do we measure 𝐺𝐸(𝑞
2) & 𝐺𝑀(𝑞

2) ?

𝑑𝜎

𝑑Ω
𝑙𝑎𝑏

=
𝑑𝜎

𝑑Ω
0

𝐺𝐸
2 + 𝜏𝐺𝑀

2

1 + 𝜏
cos2
𝜃

2
+ 2𝜏𝐺𝑀

2 sin2
𝜃

2

Where 
𝑑𝜎

𝑑Ω
0

=
𝛼2

4𝐸2 sin4
𝜃
2

𝐸′

𝐸
cos2
𝜃

2

Mott scattering cross-section formula with recoil of proton. It corresponds to scattering from a spin-0 proton. 

• At very low 𝑞2: 𝜏 =
𝑞2

4𝑀2
≈ 0 ∴  

𝑑𝜎

𝑑Ω 𝑙𝑎𝑏
𝑑𝜎

𝑑Ω 0

≈ 𝐺𝐸
2 (𝑞2)

• At high 𝑞2: 𝜏 ≫ 1 ∴  

𝑑𝜎

𝑑Ω 𝑙𝑎𝑏
𝑑𝜎

𝑑Ω 0

≈ 1 + 2𝜏 tan2
𝜃

2
𝐺𝑀
2 (𝑞2)

• In general from the intercept and slope of the plot   

𝑑𝜎

𝑑Ω 𝑙𝑎𝑏
𝑑𝜎

𝑑Ω 0

vs tan2
𝜃

2
one can estimate 𝐺𝐸(𝑞

2) & 

𝐺𝑀(𝑞
2) provided 𝑞2 is kept fixed.

Continued…



Continued…





From the plots it is clear that form factors fall rapidly with the increase in 𝑞2. For proton to be point like it 
would have been unity. 

Conclusions:

• Proton is not point-like.

• Good fit to the data shows “dipole form factor ” : 𝐺𝐸
𝑝
(𝑞2) ≈

𝐺𝑀
𝑝
𝑞2

2.79
≈ 1 −

𝑞2

0.71

−2

(in units of 𝐺𝑒𝑉2)

• Taking FT find spatial charge and magnetic moment distribution 𝜌 𝑟 ≈ 𝜌𝑜𝑒
−
𝑟

𝑎 with 𝑎 = 0.24 𝑓𝑚

• The rms charge radius is found to be 𝑟𝑟𝑚𝑠 ≈ 0.8 𝑓𝑚 . It is obtained from 𝑟2 = 6
𝑑𝐺𝐸 𝑞

2

𝑑𝑞2 𝑞2=0
.

• Electron elastic scattering from proton demonstrates that the proton is an extended object wirh rms charge 
radius of ~0.8 𝑓𝑚.

Continued…



• For elastic scattering of relativistic electrons from a point-like Dirac proton:

𝑑𝜎

𝑑Ω
𝑙𝑎𝑏

=
𝛼2

4𝐸2 sin4
𝜃
2

𝐸′

𝐸
cos2
𝜃

2
−
𝑞2

2𝑀2
sin2
𝜃

2

For elastic scattering of relativistic electrons from an extended proton:

𝑑𝜎

𝑑Ω
𝑙𝑎𝑏

=
𝛼2

4𝐸2 sin4
𝜃
2

𝐸′

𝐸

𝐺𝐸
2(𝑞2) + 𝜏𝐺𝑀

2 (𝑞2)

1 + 𝜏
cos2
𝜃

2
+ 2𝜏𝐺𝑀

2 (𝑞2) sin2
𝜃

2

• Further probing of internal substructure of protons can be done by inelastic scattering of electrons from 

protons.  That is done by increasing the energy of the incident electrons. 

Continued…


